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Bibliography for the Course

for magnetic resonance imaging

Principles of Nuclear Magnetic

Principles of Nuclear

Magnetic Resonance Resonance Microscopy
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This highly successful book, details the underlying
principles behind the use of magnetic field gradients
to image molecular distribution and ...

and many, many, many other textbooks and internet based resources....



Objectives

 Understand how NMR spectra can retlect spatial
distributions

* Understand the role of magnetic field gradients

 Understand the notion of inverse (k) space and
how to acquire image data in several dimensions



The Zeeman Effect

The NMR experiment consists in putting a sample in a magnetic field and observing the
consequent transitions between energy levels of the nucleus whose degeneracy
is lifted by the field.

The property is (nuclear) SPIN (quantum number m), and m can take values

0,1/2,1,3/2,2,5/2 ...



The Zeeman Effect
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The Zeeman Effect
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The Larmor Theorem states that the motion of a magnetic moment in a
magnetic field (Bo) is a precession around that field at a frequency

wo = —-YBo
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In spectroscopy, we adjust the homogeneity of the magnetic field so that all
the molecules in the whole sample experience exactly the same field to

within <1 Hz (0.002 ppm).

This allows resolution of very small differences in resonance frequencies, due to different
shielding of different nuclei by their electrons (chemical shifts), or due to the spin states of

other nearby nuclei (J-couplings).
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The spatial resolution in
MRI depends on the

gradient strength.

In imaging, we adjust the applied magnetic field to deliberately create a magnetic
field gradient along a given spatial direction so that the molecules in the sample
have a resonance frequency that is related to their position.
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For a constant field gradient, the NMR spectrum for a given species (e.g. the TH

in H20) will be the projection of the spin density of that species onto the axis of
the gradient.
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For a constant field gradient, the NMR spectrum for a given species (e.g. the 'H in H20) will be
the projection of the spin density of that species onto the axis of the gradient. The stronger the
applied field gradient, the greater the spatial dispersion in Hz/mm. The stronger the applied field
gradient, the weaker the signal (the total integrated signal integral is proportional to the number of

spins in the sample, and is a constant).
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The maximum spatial resolution p in the image is given by the ratio between the intrinsic line

width of the analyte (e.g. H2O) A* in Hz and the dispersion induced by the gradient in Hz/mm d, p
=A*/d.

For example, if the applied gradient induces 10 Hz/mm of dispersion, and the intrinsic line width
Is1Hz,thenp=1/10=0.1 mm.



Multi-Dimensional Imaging?

change the gradient direction: (i) projection reconstruction

= =Y (Bo+Ga0()



Multi-Dimensional Imaging?

change the gradient direction: (i) projection reconstruction
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Fourier transform NMR: Time domain signals

Fourier
transform

V

frequency

I()= [S(t)exp{-iwr}d:

frequency
domain

The Fourier transform is a mathematical process which turns a time-
domain signal, the FID, into a frequency-domain signal, the spectrum.



How does the detection period work
in the ordinary experiment?

The amplitude of the FID varies as a function of time.

In order to be able to manipulate this time-domain signal in a computer, the
signal is digitized at regular intervals.

I(w) = ﬁS(ti) exp{—iwt, dt



Time Domain Spectroscopy
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Multi-Dimensional Imaging? S

(i) Projection Reconstruction; k-space —
The free induction decay during acquisition in presence of a gradient along, for example, the X
direction, is given by
s(t,) = [p(X)exp{#XGyt, }dx

where G, =dB_/dX and we immediately see that the Fourier transform of the signal leads to a
spectrum corresponding to a projection of the spin density onto the X axis.

k
We often talk about k-space (or reciprocal space) in imaging experiments *
. . .
where the k-vector 1s given by k, =yG, t,. Then we have . « | d
YK,
e ) ® ®
s(t,)= [p(X)expfik, X }dx ¢, *.%te. .
o ° :. ... ® o
We can now look at the NMR signal in k-space. For projection ® ~® © : e = .: : ° ¢
reconstruction we find the following. e ® o e °
[ Ps ® ole (] ®
. ® . [ oloe @) ®
In this example, the experiment consists of acquiring 9 projections, progressively o] o X
incrementing the gradient direction from being parallel to X to being parallel to -X in 20° °

steps
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We can fill a two-dimensional time domain with data by repeating the
experiment, with acquisition along t; in each experiment, and with ¢
being incremented progressively from one experiment to the next.
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Projection reconstruction over samples the center part of k-space, inducing artifacts, and making
processing complicated. However, from our experience of multi-dimensional spectroscopy, we
should see that there is a much more straightforward way to sample k-space, which yields the
following signal, with k, = vG,t, and k, = vG,t, :

s(kyoky) = [p(X.¥)expli(ky X + k¥ )}dxdy

Double Fourier transform yields a two dimensional image slice
along the gradient directions X and Y. G, 5
A full three-dimensional image could be obtained by acquisition 1 "
along three gradient directions, X, Y, and Z, to yield a signal Gy
g ty —
sk kyok,) = [(X.Y,Z)exp{i(k, X + k.Y + k,Z)}dXdYdZ.
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In this example, the signal acquisition as a function of t2 is always done with the gradient direction being parallel to X,
and being constant in amplitude Gx““?. Conversely, from one experiment to another the duration, ti, of the gradient

applied along the Y direction is kept constant, but the amplitude of the gradient along Y is incremented from Gy"* to

—Gy"** 1n 11 steps.
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(i) Fourier Imaging

Spin-warp
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kx = Y(=Gx™t1 + G t2)
ky(n) = y(Gy" t1)

Homework: now draw the pulse sequence that would be used to acquire the projections shown in slide 20.



Multi-Dimensional Fourier Imaging
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Two- and Three-Dimensional Fourier Imaging
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Technical limitations for the pulsed field gradients (100 G/cm =1 T/m)

‘ Spatial resolution (~ 50 um)



Modern MRI

T —
http://health.siemens.com/mr/image-gallery/#/search/scanners:MAGNETOM%20Aera/image/73

http://www.newscenter.philips.com/pwc_nc/main/shared/assets/nl/Newscenter/2012/philips-en-isala-partnership/digitale-MRI-scanner.jpg



The MRI Scanner

MRI Scanner Cutaway




The MRI Scanner




Image contrast?
Where does the contrast in this
Image come from?

Spin (H>O) density is more or
less constant between white

and grey matter....
tissue type water content
grey matter 71 %
white matter 84 %
heart 80 %
blood 93 %

bone 12 %




Image contrast?

Worse (I?), these two images are
of the same patient, at the same
time. In one, CSF is bright. In the
other CSF does not appear, and
a MS plaque is bright.....




Conclusions

In the presence of a magnetic tield gradient strong enough
to obscure other effects, NMR spectra directly reflect
spatial concentrations of spins

The NMR is a projection of the spin density onto the
direction of the tield gradient.

A multi-dimensional inverse (k-space) space can be
defined where kq = yGati Wwith a=e.g. X,Y,Z

k space is linked to physical space by Fourier
transformation. A generalisation of multidimensional
spectroscopy.





