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and many, many, many other textbooks and internet based resources….

for magnetic resonance imaging



Objectives
• Understand how NMR spectra can reflect spatial 

distributions 

• Understand the role of magnetic field gradients 

• Understand the notion of inverse (k) space and 
how to acquire image data in several dimensions



The Zeeman Effect

The NMR experiment consists in putting a sample in a magnetic field and observing the  
consequent transitions between energy levels of the nucleus whose degeneracy  

is lifted by the field. 

The property is (nuclear) SPIN (quantum number m), and m can take values  

0, 1/2, 1, 3/2, 2, 5/2 ....
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The Zeeman Effect
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The Larmor Theorem states that the motion of a magnetic moment in a  
magnetic field (B0) is a precession around that field at a frequency 

ω0 = −γB0
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Spectroscopy
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In spectroscopy, we adjust the homogeneity of the magnetic field so that all 
the molecules in the whole sample experience exactly the same field to 
within < 1 Hz (0.002 ppm). 

This allows resolution of very small differences in resonance frequencies, due to different 
shielding of different nuclei by their electrons (chemical shifts), or due to the spin states of 
other nearby nuclei (J-couplings).
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The spatial resolution in 
MRI depends on the 
gradient strength.

In imaging, we adjust the applied magnetic field to deliberately create a magnetic 
field gradient along a given spatial direction so that the molecules in the sample 
have a resonance frequency that is related to their position.

Spectroscopy
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1D-Imaging (profile)
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The spatial resolution in 
MRI depends on the 
gradient strength.

For a constant field gradient, the NMR spectrum for a given species (e.g. the 1H 
in H2O) will be the projection of the spin density of that species onto the axis of 
the gradient.

Spectroscopy
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For a constant field gradient, the NMR spectrum for a given species (e.g. the 1H in H2O) will be 
the projection of the spin density of that species onto the axis of the gradient. The stronger the 
applied field gradient, the greater the spatial dispersion in Hz/mm. The stronger the applied field 
gradient, the weaker the signal (the total integrated signal integral is proportional to the number of 
spins in the sample, and is a constant).

Spectroscopy
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The maximum spatial resolution ρ in the image is given by the ratio between the intrinsic line 
width of the analyte (e.g. H2O) Δ* in Hz and the dispersion induced by the gradient in Hz/mm d, ρ 
= Δ* / d.

For example, if the applied gradient induces 10 Hz/mm of dispersion, and the intrinsic line width 
is 1 Hz, then ρ = 1 / 10 = 0.1 mm.

Spectroscopy
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Multi-Dimensional Imaging?
change the gradient direction: (i) projection reconstruction
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Multi-Dimensional Imaging?
change the gradient direction: (i) projection reconstruction
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Fourier transform NMR: Time domain signals 

time

frequency

Fourier
transform

time
domain

frequency
domain

I ω( ) = S t( )exp −iωt{ }dt∫
The Fourier transform is a mathematical process which turns a time-
domain signal, the FID, into a frequency-domain signal, the spectrum.



     

     

How does the detection period work  
in the ordinary experiment? 

(a)

(b) time

The amplitude of the FID varies as a function of time.

In order to be able to manipulate this time-domain signal in a computer, the 
signal is digitized at regular intervals.

I ω( ) = S ti ti( )exp −iω{ }dt∑
i = 1

N



Time Domain Spectroscopy 
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Multi-Dimensional Imaging?
(i) Projection Reconstruction; k-space

The free induction decay during acquisition in presence of a gradient along, for example, the X
direction, is given by

s t2( ) = ρ X( )exp iγXGX t2{ }dX∫
where GX = dBz dX  and we immediately see that the Fourier transform of the signal leads to a
spectrum corresponding to a projection of the spin density onto the X axis.

We often talk about k-space (or reciprocal space) in imaging experiments,
where the k-vector is given by 

† 

kX = γGX t2 . Then we have

s t2( ) = ρ X( )exp ikX X{ }dX∫ .

We can now look at the NMR signal in k-space. For projection
reconstruction we find the following.

ky

kx

In this example, the experiment consists of acquiring 9 projections, progressively 
incrementing the gradient direction from being parallel to X to being parallel to -X in 20° 
steps
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t1

PREP. EVOLUTION MIX DETECTION

t2

t1

t2
1st experiment, t1 = 0

2nd experiment, t1 = Δt

3rd experiment, t1 = 2Δt

nth experiment, t1 = (n-1)Δt

We can fill a two-dimensional time domain with data by repeating the 
experiment, with acquisition along t2 in each experiment, and with t1 
being incremented progressively from one experiment to the next.



Multi-Dimensional Imaging
(ii) Fourier Imaging
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Projection reconstruction over samples the center part of k-space, inducing artifacts, and making
processing complicated. However, from our experience of multi-dimensional spectroscopy, we
should see that there is a much more straightforward way to sample k-space, which yields the
following signal, with kX = γGXtX and kY = γGYtY :  

s kX ,kY( ) = ρ X,Y( )exp i kX X + kYY( ){ }dXdY∫
Double Fourier transform yields a two dimensional image
along the gradient directions X and Y.

A full three-dimensional image could be obtained by acquisition
along three gradient directions, X, Y, and Z, to yield a signal

s kX ,kY( ) = ρ X,Y( )exp i kX X + kYY + kZ Z( ){ }dXdY∫ dZ .,kZ ,Z

Multi-Dimensional Imaging?
(ii) Fourier Imaging



Multi-Dimensional Imaging?
(ii) Fourier Imaging
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In this example, the signal acquisition as a function of t2 is always done with the gradient direction being parallel to X, 
and being constant in amplitude GX

acq. Conversely, from one experiment to another the duration, t1, of the gradient 
applied along the Y direction is kept constant, but the amplitude of the gradient along Y is incremented from GY

max to 
−GY

max in 11 steps.

t1 t2

kx = γ(−GX
acq t1 + GX

acq t2) 
ky(n) = γ(GY

n t1)



Multi-Dimensional Imaging?
(ii) Fourier Imaging
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Homework: now draw the pulse sequence that would be used to acquire the projections shown in slide 20.

t1 t2

kx = γ(−GX
acq t1 + GX

acq t2) 
ky(n) = γ(GY

n t1)



Multi-Dimensional Fourier Imaging
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Two- and Three-Dimensional Fourier Imaging
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Technical limitations for the pulsed field gradients (100 G/cm =1 T/m)

 Spatial resolution (~ 50 μm)



Modern MRI

http://health.siemens.com/mr/image-gallery/#/search/scanners:MAGNETOM%20Aera/image/73

http://www.newscenter.philips.com/pwc_nc/main/shared/assets/nl/Newscenter/2012/philips-en-isala-partnership/digitale-MRI-scanner.jpg



The MRI Scanner



The MRI Scanner



Image contrast?

Where does the contrast in this 
image come from?

Spin (H2O) density is more or
less constant between white
and grey matter....1

2
3

n
tissue type
grey matter
white matter

heart 
blood 
bone 

water content
71 %
84 % 
80 %
93 %
12 %



Image contrast?

Worse (!?), these two images are
of the same patient, at the same 
time. In one, CSF is bright. In the 
other CSF does not appear, and
a MS plaque is bright.....
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Conclusions
• In the presence of a magnetic field gradient strong enough 

to obscure other effects, NMR spectra directly reflect 
spatial concentrations of spins 

• The NMR is a projection of the spin density onto the 
direction of the field gradient. 

• A multi-dimensional inverse (k-space) space can be 
defined where kα = γGαti with α = e.g. X,Y,Z 

• k space is linked to physical space by Fourier 
transformation. A generalisation of multidimensional 
spectroscopy.




